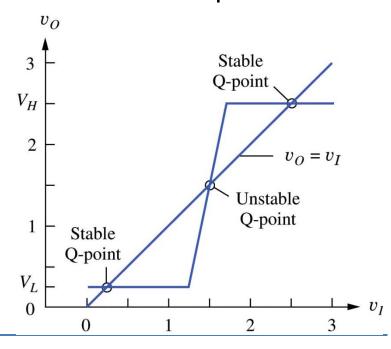

Announcements


- (Crude) notes for switching speed example from lecture last week posted.
- Schedule Final Project demo with TAs.
- Written project report to include written evaluation section.
- Send me suggestions for review/example topics.

 Sense amplifiers are used to detect the small currents that flow through the access transistors or the small voltage differences that occur during charge sharing

Sense Amplifiers 6-T Cell

M_{PC} is the precharge transistor whose purpose is to force the latch to operate at the unstable point.

6-T Cell Example

 For the figure on the previous slide, find the currents in the latch transistors when M_{PC} is turned on under the following conditions:

$$V_{DD} = 3 \ V$$
 $\left(\frac{W}{L}\right)_{All} = \frac{2}{1}$
 $NMOS:$ $PMOS:$ $K'_{n} = 60 \ \mu A/V^{2}$ $K'_{p} = 25 \ \mu A/V^{2}$
 $V_{TO} = 0.7 \ V$ $V_{TO} = -0.7 \ V$
 $\gamma = 0.5 \ V^{1/2}$ $\gamma = 0.6 \ V$ $\gamma = 0.6 \ V$

6-T Cell Example

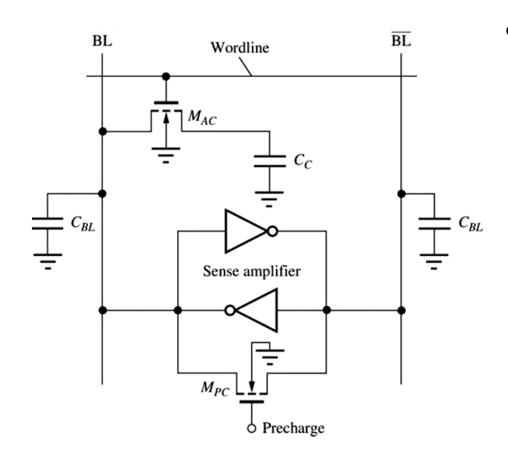
- Since the output voltage should equal on both sides of the latch when M_{PC} is on, it is known that $V_{GS} = V_{DS}$ for the latch NMOS devices and $V_{SG} = V_{SD}$ for the latch PMOS devices. Therefore these transistors are saturated.
- Due to the symmetry of the situation, the drain currents must be equal giving the following:

$$\frac{K_p'}{2} \left(\frac{W}{L}\right) (V_{SG} + V_{TP})^2 = \frac{K_n'}{2} \left(\frac{W}{L}\right) (V_{GS} - V_{TN})^2$$

$$\frac{1}{2} \left(\frac{25\mu A}{V^2}\right) \left(\frac{2}{1}\right) (3 - V_O - 0.7)^2 = \frac{1}{2} \left(\frac{60\mu A}{V^2}\right) \left(\frac{2}{1}\right) (V_O - 0.7)^2$$

$$35V_O^2 + 31V_O - 102.9 = 0 \rightarrow V_O = 1.33V$$

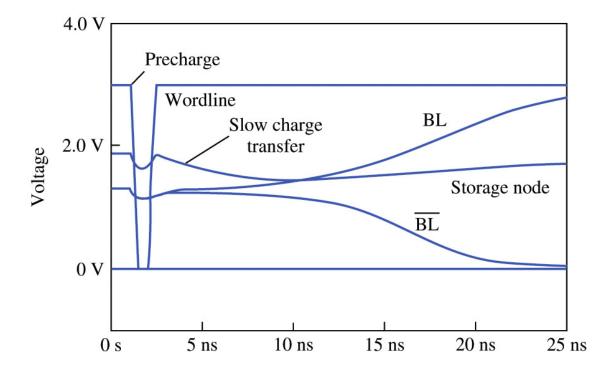
6-T Cell Example


The drain currents are then found by:

$$i_D = \frac{1}{2} \left(\frac{60\mu A}{V^2} \right) \left(\frac{2}{1} \right) (1.33 - 0.7)^2 = 23.6\mu A$$

- Note that the PMOS and NMOS drain currents are equal
- The power dissipation is given by:

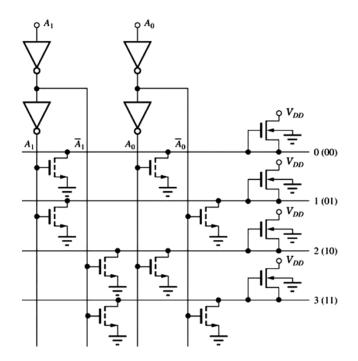
$$P = 2i_D V_{DD} = 2(23.5 \mu A)(3V) = 0.140 mW$$


1-T Cell

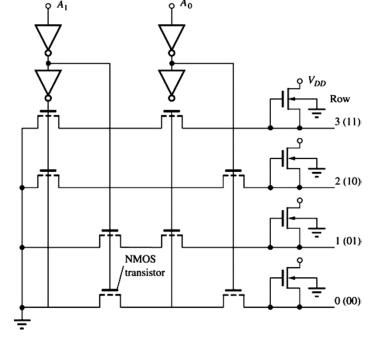
The same sense amplifier used in the 6-T cell can be used for the 1-T cell in manner shown in the figure

1-T Cell

The sense amplifier works the same as it did for the 6-T cell,
 but takes longer to reach steady state after precharge


Boosted Wordline Circuit

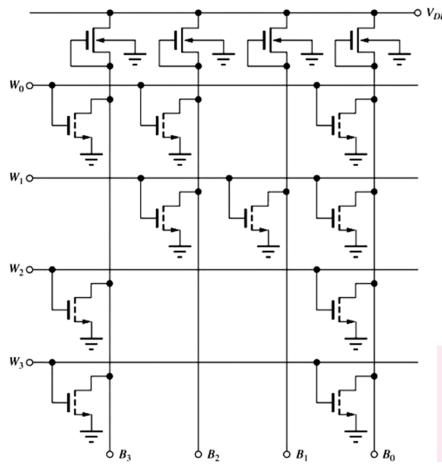
 Obviously it is desired to have a fast access in many DRAM applications. By driving the wordline to a higher voltage (referred to as a boosted wordline), say 5V instead of 3V, it is possible to increase the amount of current supplied to the storage capacitors


Address Decoders

NOR and NAND Decoders

 The following figures are examples of commonly used decoders for row and column address decoding

NMOS NOR Decoder

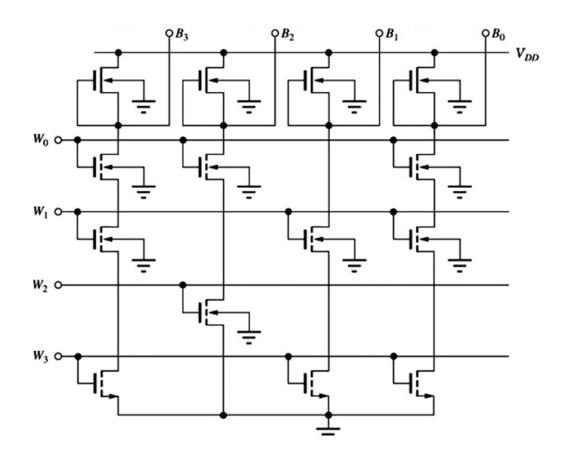

NMOS NAND Decoder

Read-Only Memory (ROM)

- ROM is often needed in digital systems such as:
 - Holding the instruction set for a microprocessor
 - Firmware
 - Calculator plug-in modules
 - Cartridge style video games

Read-Only Memory

NMOS NOR Array



- The basic structure of the NMOS static ROM is shown in the figure
- The existence of an NMOS transistor means a "0" is stored at that address otherwise a "1" is stored
- Power dissipation is large

WORD	DATA
0	0010
1	1000
2	0110
3	0110

Read-Only Memory

NMOS NAND Array

Another ROM option is the NAND array ROM which can be directly used with a NAND decoder

Programmable Read-Only Memory (PROM)

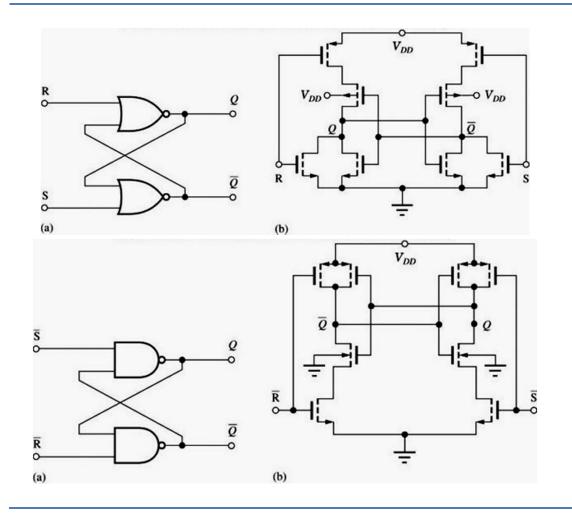
- The main problem with these previous ROMs is that they must be designed at the mask level, meaning that it is not a versatile product.
- To solve this problem, the programmable ROM (PROM) was introduced
- The standard PROM cannot be erased, so the erasable ROM (EPROM), and later, electrically erasable ROM (EEPROM) were introduced
- High density flash memories allow for electrical erasure and reprogramming of memory cells.
 - Use 2^{nd} "floating" gate with stored charge to shift V_T .

RS Flip-Flops

Truth Tables

- The reset-set (RS) flip-flop can be easily realized by using either two cross-coupled NOR or NAND gates
- The RSFF has the following truth tables

NOR RSFF

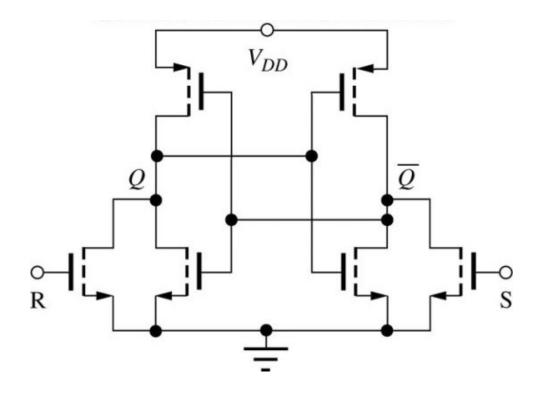

R	S	Q	$\overline{\mathbf{Q}}$
0	0	Q	\overline{Q}
0	1	1	0
1	0	0	1
1	1	0	0

NAND RSFF

$\overline{\mathbf{R}}$	 S	Q	$\overline{\mathbf{Q}}$
0	0	Q	\overline{Q}
0	1	0	1
1	0	1	0
1	1	1	1

RS Flip-Flops

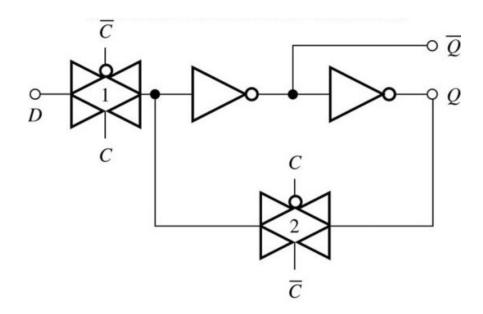
NOR and NAND Circuitry

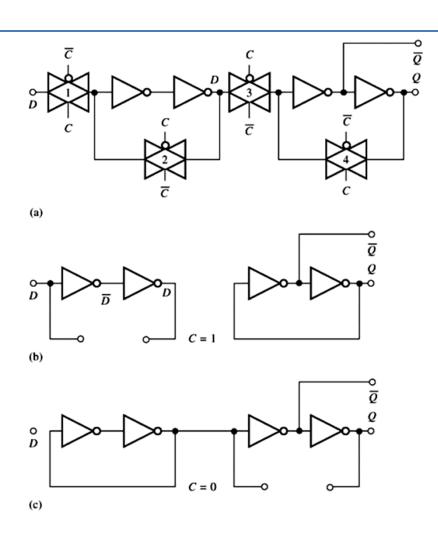

NOR	RS Flip	-Flop	
R	s	Q	\overline{Q}
0	0	Q	\overline{Q}
0	1	1	0
1	0	0	1
1	1	0	0

NAND RS Flip-Flop			
R	s	Q	\overline{Q}
1	1	Q	\overline{Q}
0	1	0	1
1	0	1	0
0	0	1	1

RS Flip-Flops

Simplified CMOS Circuit


Simplified RS flip-flop


D-Latch

Transmission-Gate Implementation

- A very important circuit of digital systems is the D-Latch which is used for a D Flip-Flop
- Whenever clock C goes high in the D-Latch, the data on D is passed through to Q

Master Slave D Flip-Flop

 By using series D-Latches that latch the data on opposite clock phases, a masterslave D flip-flop can be realized

Scope of Finals Material

- Final will be comprehensive, but will emphasize material since Exam 2 (HW 7-9).
- Semiconductors: 2.1-2.10
- Diode Physics and Circuits: 3.1-3.18
- MOSFETs: 4.1-4.10
- MOS Logic Gates: 6.1-6.12
- CMOS Logic Gates: 7.1-7.7,7.9-7.10
- MOS Memory: 8.1-8.4